Empirical Ignition Linter Integration Strategy
Overview
This document outlines the integration of the robust empirical ignition linter from ../empirical-ignition-perspective-component-schema into our AI-assisted Ignition development workflow. The integration provides production-validated linting capabilities with 92.7% validation success rate across diverse manufacturing environments.
🎯 Integration Objectives
Primary Goals
- Real-time Validation: Integrate linter into AI development workflow for immediate feedback
- Production Quality: Ensure AI-generated code meets empirical production standards
- Zero False Positives: Leverage surgical precision validation without blocking valid code
- Comprehensive Coverage: Support for 48+ component types and Jython script validation
Success Metrics
- Error Reduction: 95% reduction in production bugs through pre-deployment validation
- Development Speed: 40% faster development cycles with immediate AI feedback
- Code Consistency: 100% compliance with established coding standards
- Knowledge Transfer: Automated capture and enforcement of institutional knowledge
🏗️ Integration Architecture
Current AI Workflow Integration Points
graph TB
subgraph "AI Development Environment"
AI[AI Assistant<br/>Claude, GPT-4]
Cursor[Cursor IDE]
User[Developer]
end
subgraph "Existing Validation Layer"
WHK[WHK Validation Rules<br/>validation_endpoints.py]
MCP[MCP Tools<br/>Real-time Validation]
Rules[Rules Engine<br/>rules-engine-service.py]
end
subgraph "NEW: Empirical Linter Integration"
EmpLinter[Empirical Linter<br/>Production-Validated]
PerspLinter[Perspective Linter<br/>48 Component Types]
ScriptLinter[Script Linter<br/>Jython Validation]
Schema[Robust Schema<br/>12,220+ Components]
end
subgraph "Ignition Environment"
Gateway[Ignition Gateway<br/>Container]
Projects[Ignition Projects<br/>DemoAIProject, Global]
WebDev[WebDev Endpoints<br/>Validation API]
end
AI --> WHK
AI --> EmpLinter
Cursor --> EmpLinter
WHK --> MCP
EmpLinter --> PerspLinter
EmpLinter --> ScriptLinter
EmpLinter --> Schema
PerspLinter --> Gateway
ScriptLinter --> Gateway
MCP --> Gateway
Gateway --> Projects
Gateway --> WebDev
style EmpLinter fill:#e8f5e8
style PerspLinter fill:#e1f5fe
style ScriptLinter fill:#fff3e0
style Schema fill:#fce4ec
🔧 Integration Components
1. Linter Service Integration
A. Docker Service Addition
Add empirical linter as a containerized service:
# docker-compose.yml addition
services:
empirical-linter:
build:
context: ../empirical-ignition-perspective-component-schema
dockerfile: Dockerfile
ports:
- "8085:8085"
volumes:
- ./ignition-projects:/app/ignition-projects:ro
- ./linter-reports:/app/reports
environment:
- LINTER_MODE=production
- SCHEMA_PATH=/app/schemas/core-ia-components-schema-robust.json
networks:
- ignition-network
B. REST API Wrapper
Create API endpoints for linter integration:
# ignition-linter-service.py
from flask import Flask, request, jsonify
import subprocess
import json
import os
from pathlib import Path
app = Flask(__name__)
@app.route('/lint/perspective', methods=['POST'])
def lint_perspective():
"""Lint Perspective components via API."""
data = request.get_json()
target_path = data.get('target_path')
component_type = data.get('component_type')
# Run empirical linter
cmd = [
'python', '/app/tools/ignition-perspective-linter.py',
'--target', target_path,
'--output', '/tmp/lint-results.json'
]
if component_type:
cmd.extend(['--component-type', component_type])
result = subprocess.run(cmd, capture_output=True, text=True)
# Return structured results
return jsonify({
'success': result.returncode == 0,
'issues': parse_linter_output(result.stdout),
'stats': extract_stats(result.stdout)
})
@app.route('/lint/script', methods=['POST'])
def lint_script():
"""Lint Jython scripts via API."""
data = request.get_json()
script_content = data.get('script_content')
context = data.get('context', 'inline')
# Write script to temp file and lint
temp_file = '/tmp/temp_script.py'
with open(temp_file, 'w') as f:
f.write(script_content)
cmd = [
'python', '/app/tools/ignition-script-linter.py',
'--target', temp_file,
'--output', '/tmp/script-results.json'
]
result = subprocess.run(cmd, capture_output=True, text=True)
return jsonify({
'success': result.returncode == 0,
'issues': parse_script_output(result.stdout),
'recommendations': extract_recommendations(result.stdout)
})
2. MCP Tools Integration
A. Enhanced MCP Server
Extend existing MCP tools with empirical linter capabilities:
# Enhanced mcp-tools integration
class IgnitionEmpiricalValidator:
def __init__(self):
self.linter_service_url = "http://empirical-linter:8085"
self.perspective_linter = self._load_perspective_linter()
self.script_linter = self._load_script_linter()
async def validate_perspective_component(self, component_data: dict) -> dict:
"""Validate component using empirical linter."""
response = await self._call_linter_service('/lint/perspective', {
'component_data': component_data,
'validation_level': 'production'
})
return {
'valid': response['success'],
'issues': response['issues'],
'empirical_score': self._calculate_empirical_score(response),
'production_compliance': response['stats']['success_rate']
}
async def validate_jython_script(self, script_content: str, context: str) -> dict:
"""Validate Jython script with empirical patterns."""
response = await self._call_linter_service('/lint/script', {
'script_content': script_content,
'context': context,
'check_ignition_requirements': True
})
return {
'valid': response['success'],
'issues': response['issues'],
'ignition_compliance': self._check_ignition_requirements(response),
'recommendations': response['recommendations']
}
B. Real-time Validation Hooks
Integrate with existing validation endpoints:
# Enhanced validation_endpoints.py integration
class EnhancedWHKValidationRules(WHKValidationRules):
def __init__(self):
super().__init__()
self.empirical_validator = IgnitionEmpiricalValidator()
@staticmethod
def validate_component_enhanced(component_data, context=None):
"""Enhanced component validation with empirical linter."""
# Run existing WHK validation
whk_result = WHKValidationRules.validate_component(component_data, context)
# Run empirical validation
empirical_result = empirical_validator.validate_perspective_component(component_data)
# Merge results with empirical taking precedence for production patterns
return {
'valid': whk_result['valid'] and empirical_result['valid'],
'issues': merge_validation_issues(whk_result['issues'], empirical_result['issues']),
'whk_score': whk_result['score'],
'empirical_score': empirical_result['empirical_score'],
'production_ready': empirical_result['production_compliance'] > 0.9,
'validation_passed': whk_result['validation_passed'] and empirical_result['valid']
}
3. AI Workflow Integration
A. Pre-Generation Validation
Integrate linter into AI code generation workflow:
# AI workflow integration
class AIIgnitionWorkflow:
def __init__(self):
self.empirical_validator = IgnitionEmpiricalValidator()
self.whk_validator = WHKValidationRules()
async def generate_and_validate_component(self, ai_prompt: str, component_type: str) -> dict:
"""Generate component with AI and validate with empirical linter."""
# 1. Generate component with AI
ai_component = await self.ai_service.generate_component(ai_prompt, component_type)
# 2. Pre-validation with empirical linter
validation_result = await self.empirical_validator.validate_perspective_component(ai_component)
# 3. If validation fails, attempt auto-fix
if not validation_result['valid']:
fixed_component = await self.auto_fix_component(ai_component, validation_result['issues'])
if fixed_component:
validation_result = await self.empirical_validator.validate_perspective_component(fixed_component)
ai_component = fixed_component
# 4. Return component with validation metadata
return {
'component': ai_component,
'validation': validation_result,
'production_ready': validation_result['production_compliance'] > 0.9,
'auto_fixed': 'fixed_component' in locals()
}
async def auto_fix_component(self, component: dict, issues: list) -> dict:
"""Attempt to auto-fix common component issues."""
fixed_component = component.copy()
for issue in issues:
if issue['code'] == 'MISSING_META_PROPERTY':
# Auto-add missing meta properties
if 'meta' not in fixed_component:
fixed_component['meta'] = {}
if 'name' not in fixed_component['meta']:
fixed_component['meta']['name'] = f"Generated{component.get('type', 'Component').split('.')[-1]}"
elif issue['code'] == 'JYTHON_IGNITION_INDENTATION_REQUIRED':
# Auto-fix Ignition indentation requirements
script_path = issue['component_path']
script_content = self._get_nested_value(fixed_component, script_path)
if script_content:
fixed_script = self._fix_ignition_indentation(script_content)
self._set_nested_value(fixed_component, script_path, fixed_script)
return fixed_component
B. IDE Integration
Provide real-time linting in development environment:
# Cursor/VSCode integration via Language Server Protocol
class IgnitionLSPServer:
def __init__(self):
self.empirical_validator = IgnitionEmpiricalValidator()
async def on_document_change(self, document_uri: str, content: str):
"""Provide real-time validation as user types."""
if document_uri.endswith('view.json'):
try:
component_data = json.loads(content)
validation_result = await self.empirical_validator.validate_perspective_component(component_data)
# Send diagnostics to IDE
diagnostics = self._convert_issues_to_diagnostics(validation_result['issues'])
await self.send_diagnostics(document_uri, diagnostics)
except json.JSONDecodeError:
# Send JSON syntax error
await self.send_diagnostics(document_uri, [{'message': 'Invalid JSON syntax'}])
📋 Implementation Plan
Phase 1: Core Integration (Week 1-2)
- Docker Service Setup: Add empirical linter container to docker-compose.yml
- API Wrapper: Create REST API service for linter integration
- Basic MCP Integration: Extend existing MCP tools with empirical validation
- Testing: Validate integration with existing projects
Phase 2: Enhanced Validation (Week 3-4)
- WebDev Integration: Enhance validation_endpoints.py with empirical linter
- Auto-fix Capabilities: Implement common issue auto-correction
- Performance Optimization: Cache validation results and optimize API calls
- Error Handling: Robust error handling and fallback mechanisms
Phase 3: AI Workflow Integration (Week 5-6)
- Pre-generation Validation: Integrate linter into AI code generation
- Real-time Feedback: Provide immediate validation feedback to AI
- Learning Loop: Use validation results to improve AI generation quality
- Batch Processing: Support for validating entire projects
Phase 4: Developer Experience (Week 7-8)
- IDE Integration: LSP server for real-time validation in Cursor/VSCode
- CLI Tools: Enhanced command-line tools for development workflow
- Reporting: Comprehensive validation reports and metrics
- Documentation: Complete integration documentation and examples
🔍 Validation Scenarios
Scenario 1: AI Component Generation
# Example: AI generates a button component
ai_prompt = "Create a start button for fermentation tank control with proper security"
result = await ai_workflow.generate_and_validate_component(ai_prompt, "ia.input.button")
# Expected validation checks:
# - Component schema compliance (48 component types)
# - Security role access requirements (BTN-ADV-001)
# - Color standards for start buttons (BTN-ADV-002)
# - Jython script indentation requirements
# - Production pattern compliance
Scenario 2: Script Validation
# Example: Validate inline Jython script
script = """
try:
tank_status = system.tag.readBlocking("[default]Fermentation/Tank1/Status")
if tank_status.value == "Ready":
system.tag.writeBlocking("[default]Fermentation/Tank1/Command", "Start")
system.perspective.print("Fermentation started")
except Exception as e:
logger.error("Failed to start fermentation: {}".format(e))
"""
validation = await empirical_validator.validate_jython_script(script, "button_click")
# Checks: Ignition indentation, exception handling, system function usage
Scenario 3: Project-wide Validation
# Example: Validate entire project
project_path = "/app/ignition-projects/DemoAIProject"
results = await empirical_validator.validate_project(project_path)
# Returns:
# - Component compliance statistics
# - Critical issues requiring immediate attention
# - Production readiness score
# - Recommendations for improvement
📊 Expected Outcomes
Quality Improvements
- 95% Error Reduction: Catch production issues before deployment
- 100% Schema Compliance: All components meet empirical standards
- Zero False Positives: Surgical precision validation
- Production Patterns: Enforce proven industrial automation patterns
Development Efficiency
- 40% Faster Cycles: Immediate feedback reduces iteration time
- Automated Fixes: Common issues resolved automatically
- Knowledge Transfer: Institutional knowledge encoded in validation rules
- Consistent Quality: Standardized code quality across all developers
Integration Benefits
- Seamless Workflow: No disruption to existing development process
- Real-time Feedback: Immediate validation during AI generation
- Comprehensive Coverage: 48+ component types and Jython scripts
- Production Validated: Based on analysis of 12,220+ real components
🚀 Getting Started
Prerequisites
- Docker and Docker Compose
- Access to empirical-ignition-perspective-component-schema repository
- Existing AI development workflow setup
Quick Setup
# 1. Clone empirical linter (if not already available)
cd /Users/pmannion/Documents/whiskeyhouse/
git pull empirical-ignition-perspective-component-schema
# 2. Add linter service to docker-compose.yml
# (See implementation section)
# 3. Start enhanced services
docker-compose up -d empirical-linter
# 4. Test integration
curl -X POST http://localhost:8085/lint/perspective \
-H "Content-Type: application/json" \
-d '{"target_path": "/app/ignition-projects/DemoAIProject"}'
Validation
# Test perspective component validation
python test-empirical-integration.py --test-perspective
# Test script validation
python test-empirical-integration.py --test-scripts
# Test full workflow
python test-empirical-integration.py --test-workflow
📚 References
- Empirical Linter Documentation
- Current Validation Framework
- MCP Tools Specification
- AI Development Workflow
Built with ❤️ for production-quality Ignition development
Empirical validation • AI-assisted development • Industrial-grade quality